Short Communication EXTRAHEPATIC METABOLISM OF CARBAMATE AND ORGANOPHOSPHATE THIOETHER COMPOUNDS BY THE FLAVIN-CONTAINING MONOOXYGENASE AND CYTOCHROME P450 SYSTEMS

ثبت نشده
چکیده

The cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are the major oxidative enzymes in phase I metabolism. Many organophosphate and carbamate thioether compounds are excellent substrates for these enzymes. Stereoselective sulfoxidation of fenthion and methiocarb by human liver, kidney, and microsomes was investigated. A high level of stereoselectivity in the formation of fenthion ( )-sulfoxide was observed in kidney and intestinal microsomes. This activity was not inhibited by the P450 inhibitor 1-aminobenzotriazole but was dramatically reduced following mild heat treatment. In liver, fenthion was metabolized to its sulfoxide in a nonstereoselective manner, and the activity was sensitive to both 1-aminobenzotriazole and heat treatment. The carbamate pesticide methiocarb also was sulfoxidated with a high degree of stereoselectivity in human kidney microsomes. Human liver microsomes formed both stereoisomers in equal amounts. Sulfoxide formation in kidney was not inhibited by 1-aminobenzotriazole but was abolished in liver microsomes. Formation of methiocarb sulfoxides was not observed in intestinal microsomes. The relative contribution of FMO1 and FMO3 to the sulfoxidation of carbophenothion, demeton-O, ethiofencarb, fonofos, and methiocarb also was investigated by using baculovirusexpressed recombinant proteins. FMO1 showed the highest catalytic activity for all pesticides. This study indicates that FMO1 may have a bigger role in extrahepatic metabolism than previously

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Communication EXTRAHEPATIC METABOLISM OF CARBAMATE AND ORGANOPHOSPHATE THIOETHER COMPOUNDS BY THE FLAVIN-CONTAINING MONOOXYGENASE AND CYTOCHROME P450 SYSTEMS

The cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are the major oxidative enzymes in phase I metabolism. Many organophosphate and carbamate thioether compounds are excellent substrates for these enzymes. Stereoselective sulfoxidation of fenthion and methiocarb by human liver, kidney, and microsomes was investigated. A high level of stereoselectivity in the formation o...

متن کامل

Short Communication EXTRAHEPATIC METABOLISM OF CARBAMATE AND ORGANOPHOSPHATE THIOETHER COMPOUNDS BY THE FLAVIN-CONTAINING MONOOXYGENASE AND CYTOCHROME P450 SYSTEMS

The cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are the major oxidative enzymes in phase I metabolism. Many organophosphate and carbamate thioether compounds are excellent substrates for these enzymes. Stereoselective sulfoxidation of fenthion and methiocarb by human liver, kidney, and microsomes was investigated. A high level of stereoselectivity in the formation o...

متن کامل

Short Communication EXTRAHEPATIC METABOLISM OF CARBAMATE AND ORGANOPHOSPHATE THIOETHER COMPOUNDS BY THE FLAVIN-CONTAINING MONOOXYGENASE AND CYTOCHROME P450 SYSTEMS

The cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are the major oxidative enzymes in phase I metabolism. Many organophosphate and carbamate thioether compounds are excellent substrates for these enzymes. Stereoselective sulfoxidation of fenthion and methiocarb by human liver, kidney, and microsomes was investigated. A high level of stereoselectivity in the formation o...

متن کامل

Extrahepatic metabolism of carbamate and organophosphate thioether compounds by the flavin-containing monooxygenase and cytochrome P450 systems.

The cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are the major oxidative enzymes in phase I metabolism. Many organophosphate and carbamate thioether compounds are excellent substrates for these enzymes. Stereoselective sulfoxidation of fenthion and methiocarb by human liver, kidney, and microsomes was investigated. A high level of stereoselectivity in the formation o...

متن کامل

Biochemical characterization of hydrolytic and oxidative enzymes in insecticide resistant and susceptible strains of the German cockroach (Dictyoptera: Blattellidae).

We have identified resistance mechanisms in the German cockroach, Blattella germanica (L.), for propoxur and chlorpyrifos in strains of cockroaches that display multiresistance to several organophosphate and carbamate insecticides. The resistance mechanisms involve the combined effects of increased oxidative and hydrolytic metabolism and both strains are resistant to chlorpyrifos and propoxur. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005